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Transport in a Disordered OneDimensional System: 
A Fraetal View 

R o b e r t  J. R u b i n  1 

We reexamine the calculation of the transmission coefficient of a random array 
of N isotopic defects in an otherwise perfect, harmonic, one-dimensional crystal 
lattice. The thermal conductivity of this model system has been studied under 
steady state conditions in which there is a kinetic temperature difference across, 
and an associated energy flux through, the array of defects. An exact expression 
for the transmission coefficient is obtained in terms of the magnitude of an Nth- 
order determinant. Rubin reduced the evaluation of the determinant to the 
evaluation of a sequence of N - -  1 nonlinear transformations drawn from a set 
of transformations parametrized by the nearest-neighbor spacing of the isotopic 
defects. These transformations are self-inverse and provide an example of what 
Mandelbrot has termed a self-inverse fraetal. The variety of limiting 
distributions of values obtained under these transformations will be illustrated. 

KEY WORDS: Disordered harmonic crystal; energy transport; fractional 
linear transformation; localization; self-inverse fractal; transmission coefficient. 

1. INTRODUCTION 

This  paper  is devo ted  to the s tudy  of  a set o f  r a n d o m  f rac t iona l  l inear  

t r ans fo rma t ions  wh ich  appears  in a m o d e l  for s tudying  energy  t r anspor t  in a 

d i so rde red  system. (1-6) These  t r a n s f o r m a t i o n s  are  sel f - inverse  and p rov ide  an 

example  o f  wha t  M a n d e l b r o t  (7) has  t e rmed  a self-inverse fractal.  W e  will  

first descr ibe  the phys ica l  m o d e l  and s u m m a r i z e  known  ana ly t i c  resul ts  

which  are used in this paper .  (1'2) Then  we will  p resen t  s o m e  results ,  based  on 

M o n t e  C a r l o  s imula t ions  o f  the d isorder ,  which  i l lus t ra te  the va r i e ty  o f  

l imi t ing behav io r  encoun te red  in i te ra t ing  f rac t iona l  l inear  t r ans fo rma t ions  

which  are  selected at r a n d o m  f rom a pa r t i cu la r  set. 

1 Polymers Division, National Bureau of Standards, Gaithersburg, Maryland 20899. 
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2. THE MODEL 

We consider an infinite one-dimensional harmonic crystal with nearest- 
neighbor interactions. The particles are labeled by the index r, - o o  < r < oo; 
and all particles have the mass m except for N defect particles at lattice 
positions r=Aj ,  j =  1,..,,N. The mass of each of the defect particles is M; 
and the nearest-neighbor force constant is assumed to be equal to f 
everywhere in the crystal, independent of local values of particle mass. It is 
assumed that 0 = A ~  < A  2 < ... < A  N and that nearest-neighbor spacings, 
A,  = A , - - A , _  1, are independent, identically distributed random variables. 
The equations of motion of the one-dimensional crystal are 

(mr/m)x~T(r,r)=�88 1, r ) - -2z(r ,r)+z(r  + 1, r)] (1) 

where x(r, r) is the displacement of particle r from its equilibrium position 
and m r is the mass of the particle at lattice site r. In Eq. (1), r is a dimen- 
sionless time r =  2(f/m)~/zt; and each subscript r denotes differentiation 
with respect to r. 

The transport problem which we consider in this model is the 
calculation of the steady state transmitted amplitude, T N, of a wave of 
frequency co in the region r > A N when a wave of unit amplitude and 
frequency co is incident on the disordered region from the left. In the infinite 
perfect crystal [all m r = m in Eq. (1)], a unit-amplitude wave of frequency co 
moving from left to right is 

z(r, r) = exp [i(~or - kr)] (2) 

with the frequency co = sin(k/2). Rubin m obtained the following explicit 
expression for the transmitted amplitude of a particle at r >i A N: 

rN=fD.1-1 (3) 

where O N denotes the determinant of the matrix whose (r, s) element is 

{6r,, + iA exp[ - ik  IAr-A,I]} (4) 

where 6r, s is the Kronecker delta, 

A = Qco(1 - -  ( . /)2) - 1 / 2  (5) 

and 

Q = (M/m) - 1 (6) 
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The determinant  D N can be reduced to tr idiagonal form so that  D N satisfies a 
two-term recurrence relation 

DN= [1 + i A  + ( 1  - i A ) e x p ( - 2 i k a N ) ] D  n 1 - e x p ( - 2 i k a u ) D n _ z  (7) 

with D o = 1, D 1 = 1 + iA and a. =An --AN_ 1. This relation is equivalent to 
the linear fractional t ransformat ion 

g N  = [6 ~- (6 - -  gN--1) e x p ( - 2 i k a x -  2i~)1-1 (8) 

where gN = eiODN-1/DN, 1 + iA = 6e i~ and gl = 6-1.  The transmitted 
amplitude for a single defect is 

T 1 ~ 6  -1 

In the limit of  very low concentrat ion of defects, i.e., when the mean nearest- 
neighbor spacing is large compared  to incident wave length, Rubin (1) has 
shown that  the defects in a random array scatter independently, and 

Specifically, in the limit a = ( a , ) - - ,  oo, and co = sin(k/2) with k different 
from a rational fraction of re, 

lim 1 .,wo~ N- in T N = --In 6 

Rubin defined the attenuation per defect, aN(CO, Q, a), as 

1 
aN(CO, Q, a)  = -- ~ -  In T N (9) 

This quanti ty is simply related to the localization length, which has been the 
subject of  many  investigations (1-4'6'8) of  t ransport  in disordered systems. 
Assuming that  the nearest-neighbor spacing distribution function has the 
form 

p(a.)=c(1 --c) a .=  1,2 .... (lo) 

with a = ( a , )  = c -1, Rubin (1) evaluated a•-(co, Q, a). A typical set of  results 
is shown in Fig. 1 where values of  as(CO, Q, a) are plotted as a function of  CO 
in the case Q =  1, a - - 1 0  for arrays of  N =  3 • 10 4 defects. Each point 
represents a value of as(CO, 1, 10) for a different r andom array of defects. 
Values of  aN(CO, 1, 10) for different random arrays,  but the same frequency, 
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Fig. 1. Plot of the Monte Carlo estimates of aN(on, 1, 10) based on arrays of 3 • 10 4 defects. 
The dots represent the values of aN(W, 1, 10). The solid curve is a plot of In 6, the attenuation 
constant for a single isolated defect. 

are indistinguishable on the scale of  Fig. 1. The solid curve in Fig. 1 is a plot 
of  the function 

- - l n  T 1 = in  

the attenuation of independent scatterers. This function provides a 
surprisingly good fit to the results of  the simulations for a > /10  and o) ~< 0.9. 

Our interest in this paper lies in the connection between the structure 
evident, in Fig. 1, in values of  aN(w, 1, 10) near o)~--0.5, 0.6, 0.7, and 0.8 and 
the structure in the related distribution of  values of  {gn}. The general relation 
between these quantities, aN(09, Q, a) in Eq. (9) and the gn's defined in 
Eq. (8), is 

N 

aN(og, Q,a)=--N -1 ~" l n l g , [  (11) 
n = l  

Structure in the distribution of  the values of  sets of  { g.} obtained for disor- 
dered arrays  of  defects will be illustrated in Section 3. 
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In addition to the formula  for T N, one can obtain (i) an explicit 
expression for the physically related ratio of  the amplitude of the last defect 
particle at A n to the amplitude of the first defect particle at A~, 

= Ix(AN)I/ tz(A 1)1 

= I/SNt -1 
(12) 

The determinant  /~N satisfies the same two-term recurrence relation as DN, 
Eq. (7), but with the different starting conditions: /~o = 1, /91 = 1. Conse- 
quently, the linear fractional t ransformat ion for gn = e~ iDN-~ /Dn  is that for 
gN in Eq. (8) with gl = e~'i. Rubin(2) showed, by combining the recurrence 
relations for D N and /SN, that 

g u -  gu = iA e x p ( r  2 k A N i ) T N T  N (13) 

It follows from Eq. (13) that  whenever T N and iPU~0  with increasing N, 

g u - -  gN --~ 0" 
Finally, consider the complex g plane depicted in Fig. 2 and the 

t ransformat ion 

g = [6 + (6 --  g ' ) e  -zika-zi4'] - '  

where (5= I 1 + i A  I = (1 qLzj2)l/2 and 4 = t a n - l A .  The unit circle C has its 
center at the origin and the orthogonal  circle K 0 with radius ]A I has its 
center at (J, 0). The vector g '  defines a circle K, concentric with K 0. The 

/ c  

Fig. 2. The complex g plane showing the unit circle C with its center at the origin and the 
circles K and K 0 with their centers at J, The circle K' is the inverse of the circle K in the unit 
circle. 
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vector 5 + (5 - -  gt)e -2i~a-2io also lies on K. The image of the circle K in the 
unit circle C is also a circle, (9) and is shown dashed in Fig. 2. It the vector 
pe ~ lies on K, then its reciprocal, or image in the unit circle, is p-~e-~; and 
it lies on K ' .  The circle K0, which is othogonal to the unit circle is self- 
reciprocal.  (9) The initial value, g~ = 6-~,  lies inside the unit circle on the real 
axis, whereas the initial value, ~a = e ~,  lies at an intersection of K 0 and C. 
(The particular intersection is determined by the algebraic sign of Q.) Thus 
the distribution of  successive values of  ft, associated with a particular array 
of defects lies on the circle K 0 whereas the successive values of  g ,  lie in the 
interior of  K 0. 

3. RESULTS OF S I M U L A T I O N  EXPERIMENTS 

The attenuation, aw(Og, Q, a), which is defined in Eq. (9) as the average 
of ln lg ,  I, is a function of three parameters  besides N whose ranges are 
0 < c o <  1, - 1  < Q < ~ ,  and 1 < a < ~ .  In Fig. 3, we have plotted the 
values of  g ,  inside the circle K 0 for n =  1,..., 104 in the case co = 0 . 1 ,  
Q = - 0 . 2 ,  with nearest-neighbor spacings between defects selected according 
to the distribution, Eq. (10) when ( a ) =  10. The value of ~i = tan-~  A in this 
case is 0 ~ - 0 . 0 2  radians. Thus the angle 2 ]~l subtended by the circle K 0 at 
the center of  the unit circle (see Fig. 2) is relatively small. The results of a 
different simulation in which only the value of ( a )  has been changed are 
shown in Fig. 4. In this case ( a ) =  2. One piece of information which is 
necessarily suppressed in the representation of the values of  the large number  

. 0 2  

l i t ~ ! : a ~ .  E.+ ~i "~ ;I ,N �9 .'4.,T.'~,I~'P l l i~ i ' t l  I 
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Fig. 3. Plot of locations of 10 4 values values of g, inside the circle K 0 for the case oJ = 0.1, 
Q =-0 .2 ,  and (a )=  10. 
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Fig. 4. Plot of locations of 10 4 values of  gn inside the circle K o for the case ~o=0.1 ,  
Q = -0 .2 ,  and (a)  = 2. 

of gn's in Figs. 3 and 4 is their order in the sequence of generation. Suffice it 
to say that the next 104 values of gn in either case lie in a narrow annular 
ring close to the limiting circle, K 0. For larger values of ]~i I = l t a n - l A I ,  
similar plots of the distribution of the first 104 values of gn inside the circle 
K 0 are characterized by a sparse set of points in the interior of K 0 with the 
majority of points lying close to the boundary circle K 0. It follows from 
Eq. (13) as well as test simulations that gn approaches ft, for large n. Conse- 
quently, a prominent feature in the values of aN(O) , 1, 10)  such as that near 
co = 0.7, can as readily be related to the distribution of values of ft, as to the 
distribution of values of g~. Rubin (1) showed that the successive values of ~n 
for co = sin(zt/4), i.e., k = z~/2, and Q >/1 all lie on the portion of the circum- 
ference of K 0 which lies inside the unit circle. In this case the circle K 0 
subtends the angle 2~i/> ~z/2 at the center of the unit circle. For values of k 
close to, but different from, zr/2 the values of gn spill out into the remainder 
of the circumference of K 0. In Fig. 5 we have represented the distribution of 
10 4 values of ft, on the circumference of K 0 inside the unit circle in the case 
k = ~/2, Q = 1 and (a)  = 8/3. This portion of the circumference has been 
divided into 501 equal intervals and the fraction of ~, values which fall in 
each interval is plotted vs. the interval number. The restricted range of the g 
transformation in this case can be easily demonstrated ~ because the 
rotation factor exp(-2ika,- 2i~), which rotates the difference 6 -  g , - i  on 
the circumference of the circle K0, assumes only two values depending upon 
whether a n is odd or even, respectively, exp(Dt/2) or exp(--Dt/2). The relative 
frequency with which these two rotation factors occur is related to the value 

822/36/5-6-8 
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Fig. 5. Plot of the distribution of 104 values of ft, on the arc of K 0 inside the unit circle in 
the case ~o = 2 -1/2, Q = 1, (a) = 8/3. The arc has been divided into 501 equal intervals and 
the fraction of the values of g ,  contained in each interval is plotted vs. interval number. 

of (a). Either of  the n/2 rotation factors carries the n/2 interior arc of Ko 
outside the unit circle so that there is a gap between the two resultants. 
When the inverse of  a resultant is formed in the unit circle to complete the g 
transformation, the new value of  g lies on K 0 inside the unit circle. ~1) Since 
all values of  ~, lie inside the unit circle, the value of  

N 
aN( 2-1/2' 1, a )  = - N - 1  Z l n l g . I  

n= l  

is obviously positive. The prominent peak in the values of  CtU(O~, 1, 10) in 
Fig. 1 near ~o = 2-1/2 can be understood as a consequence of  the spilling out 
of  values of  ~,  from inside the unit circle to cover the entire circle K 0 as co 
departs from the value 2-1/2 and an associated reduction in the value of  the 
s u m  

N 
- - N - 1  ' ~  In I f f ,  l 

n= l  

Finally, in Figs. 6 and 7, we show the distribution of  l 0  4 values of  ~ 
on the circle K 0 for the cases w = sin(n/6), (k = n/3), Q = 1, ( a ) =  2 and 
09 = sin(n/5), (k = 2n/5), Q = 1, (a )  = 2. In both cases the circumference of  
K 0 has been divided into 301 equal intervals, labeled from 0 to 300. Intervals 

1 Subsequent iterations of the two transformations produce the gaps within gaps within gaps, 
as seen in Fig. 5 and typical of fractal structures. 
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Fig. 6. Plot of the distribution of 104 values of  gn on the circle K 0 in the case w = 1/2, 
(k = ~/3), Q = 1, <a) = 2. The circumference of K 0 has been divided into 301 equal intervals 
labeled from 0 to 300 and the fraction of the values of ~,  contained in each interval is plotted 
vs. interval number. Intervals 0 and 300 are farthest from the center of the unit circle. 

0 and 300 are farthest from the center of the unit circle. The fraction of o~n 
values in each interval is plotted versus interval number. There is 
considerable structure evident in the distribution of gn values in each of  these 
figures as well as that in Fig. 5 for co = sin(zr/4), (k = zc/2), Q = 1, <a) = 8/3. 
The gaps in the ~,  distributions are striking. However, except for the peak in 
the aN(co, 1, 10) distribution near co = 2 -u2,  we have not as yet been able to 
establish any simple relationship between structure in ~ ,  distributions and 

Fig. 7. 
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Plot of the distribution of 104 values o f g  n on the circle K o in the case o ) =  sin(n/5),  
(k = 2zr/5), Q = 1, (a )  = 2. 
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some of  the less-pronounced features in the plot of  aN(w, 1, 10) vs. w in 
Fig. 1. Further study of  the g transformations is of  interest, independent of  
their connection with attenuation in the transmission problem. In the 
examples depicted in Figs 5-7,  members of  a set of  transformations which 
differ only in the values of  the spacings, an, have different fixed points. Thus 
repeated iteration with a particular set member leading to convergence 
toward its fixed point is interrupted whenever a different member of  the set 
of  transformations is introduced into the sequence. Is this repeated 
interruption a sufficient condition for gaps and/or  structure in the ~, 
distribution? In the foregoing examples, the parameter k =  2 sin-1 co is a 
rational fraction of  ~z; and consequently the number of  members of  the 
associated set of  g transformations is finite. 

A C K N O W L E D G M E N T  

The Monte Carlo simulations reported here are samples of  an extensive 
investigation carried out with the assistance of  Mrs. Mary Menzel at the Los 
Alamos Scientific Laboratory.  
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